top of page

Developing small molecules, changing people lives

Preventing the onset of
genetic neurodegenerative diseases related to
axonal transport defects


Located in Grenoble, France, HuntX Pharma

is a biotech company created in 2022 to develop game-changing therapies for neurological disorders with unmet medical needs.

At the genesis of the project there is a change of paradigm in the field of neuroscience - impaired axonal transport is discovered to be the key for the development of many neurological diseases.


This hypothesis, formulated by Pr. Frédéric Saudou, our co-founder and CSO, resulted in the identification of the same pathological mechanism in more than 50 neurological diseases. This discovery opens the way to the development of new drugs targeting axonal transport. These survival molecules will protect the brain from neuronal death.

This original and disruptive therapeutic strategy is the fundament of
HuntX Pharma, a biotech that intends to be the Pioneer and Leader in the treatment of diseases related to axonal transport defects (ATD) starting with Huntington disease.


At HuntX Pharma, we work every day to develop disease modifiers which will lift the burden of patients with neurological disorders, otherwise doomed to a progressive and inevitable neurodegeneration leading to premature death.
Our ambition is based on high-quality and patient-driven science and is supported by worldwide renowned experts in the field.

Laure Jamot_edited.png

Laure Jamot, PhD,

President of HuntX Pharma


HEC challenge +_edited.png

Dr. Laure Jamot is a neuroscientist with 20 years of experience in Preclinical and Clinical development with 7 years on HD. She is the inventor of several granted patent families. She previously co-founded and was CSO / COO of THAC (The Healthy Aging Company). She has launched 16 clinical trials on 50 rare diseases with 300 “Centres de Maladies Rares” and carried out 2 interventional clinical trials with first in man, on a rare hepatic disease (Fulminant hepatitis, phase 1 & 2).

Laure Jamot is a scientific graduate of Université René Descartes and a business graduate of Haute Ecole de Commerce (HEC Challenge+). She worked in an academic environment at Mount Sinai Hospital (Toronto, Canada) and then at Hôpital de la Pitié-Salpétrière (Paris, France) prior to dedicating her career to research and development of therapies for patients affected by rare diseases.

Frédédic Saudou_edited.png

Prof. Frédéric Saudou, PhD,
Chief Scientific Officer of HuntX Pharma


Frédéric Saudou is Professor at the Grenoble Institut of Neuroscience (GIN) since 2013. After studying molecular pharmacology and human genetics at the University of Strasbourg with R. Hen, and with J.L. Mandel, Frédéric Saudou did a second postdoc at Harvard Medical School with M.E. Greenberg.

In 2000, he moved back to France as group leader at Institut Curie then was director of the GIN from 2013 to 2023.

His work focuses on the mechanisms by which Huntingtin - the protein that when mutated causes Huntington’s disease - leads to neuronal dysfunction. His main contribution is the unraveling of huntingtin function in the control of axonal transport of trophic factors.  In 2014, he received the Richard Lounsbery prize for medicine and biology from the French and US National Academies of Science. He is author of more than 100 publications in high impact journals.


What is
Disease ?

HD is a rare and inherited neurodegenerative disease caused by a triplet expansion mutation in one gene : Huntingtin (HTT). The consequence of the mutation is the breakdown of neurons in specific region of the brain (cortex and striatum) affecting movement, intellect and emotion. The triad of Psychiatric, Cognitive and Motor symptoms appears mainly around the third and fourth decades of life. The aggravation of the symptoms with age leads to a loss of autonomy for patients who progressively need assistance for every single daily task.
Some 300,000 people worldwide are concerned by Huntington Disease (global data, HD 2021; Delveinsight, HD 2022)

HD - a crucial need

for therapies

If a better caring of the patient has undoubtedly improved their lives, we are still waiting for a cure for HD. There are treatments that reduce anxiety, depression and motor symptoms, but they do not slow the progression of the disease. Because HD is caused by a well-characterized mutation in a single gene (HTT), the efforts to develop therapies have been focused on correcting the mutation or eliminating the mutant protein.

However, these strategies have not yet translated into therapies for patients. Thus, there are great expectations for new therapeutic options.

Why is

innovation so necessary ?

Upon scientific demonstration that axonal transport defect (ATD) is responsible for HD we identified a new class of molecules (''first in class'') that rescues axonal transport.

We demonstrated in preclinical in vivo studies that HX127, our first compound, protects the brain from disease-associated degenerations and reverses the triad of symptoms.

Science and Innovation
Our how-know

Science and innovation

Focusing on Huntington disease and with 25 years of experience studying huntingtin biology, we were the first to demonstrate that defect in the transport of “brain-derived neurotrophic factor”, a trophic factor (BDNF) essential for brain function, is responsible for the dysfunction and degeneration of striatal and cortical neurons, the most affected neurons in HD patients (Gauthier et al., 2004).


Based on this sound knowledge of huntingtin's function and dysfunction, we identified a new class of molecules that rescues ATD of BDNF and circuit function in HD affected long before neurodegeneration occurs (Vitet et al., 2020).

Our technology

We developed state of the art microfluidic devices also known as brain-on-a-chip which reconstitutes specific brain circuits to study neuronal transport between two structures of interest. This allows us to identify therapeutic molecules using high temporal and spatial resolution imaging (Virlogeux et al., 2018). As a proof of concept, we used this tool to select our first candidate drug, HX127, which has been evaluated and validated in vivo on relevant HD models (Virlogeux et al., 2021). This device, which recreates the neuronal circuitry, offers a wide range of therapeutic applications for many neurological diseases related to ATD.

Key publications
from the team

Bruyère, J., Abada, Y.-S., Vitet, H., Fontaine, G., Deloulme, J.-C., Cès, A., Denarier, E., Pernet-Gallay, K., Andrieux, A., Humbert, S., Potier, M.-C., Delatour, B., Saudou, F., 2020. Presynaptic APP levels and synaptic homeostasis are regulated by Akt phosphorylation of huntingtin. eLife 9, e56371.

Ehinger, Y., Bruyère, J., Panayotis, N., Abada, Y.-S., Borloz, E., Matagne, V., Scaramuzzino, C., Vitet, H., Delatour, B., Saidi, L., Villard, L., Saudou, F., Roux, J.-C., 2020. Huntingtin phosphorylation governs BDNF homeostasis and improves the phenotype of Mecp2 knockout mice. EMBO Mol Med 12, e10889.

Gauthier, L.R., Charrin, B.C., Borrell-Pagès, M., Dompierre, J.P., Rangone, H., Cordelières, F.P., De Mey, J., MacDonald, M.E., Lessmann, V., Humbert, S., Saudou, F., 2004. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138.

Saudou, F., Humbert, S., 2016. The Biology of Huntingtin. Neuron 89, 910–926.

Virlogeux, A., Moutaux, E., Christaller, W., Genoux, A., Bruyère, J., Fino, E., Charlot, B., Cazorla, M., Saudou, F., 2018. Reconstituting Corticostriatal Network on-a-Chip Reveals the Contribution of the Presynaptic Compartment to Huntington’s Disease. Cell Reports 22, 110–122.

Virlogeux, A., Scaramuzzino, C., Lenoir, S., Carpentier, R., Louessard, M., Genoux, A., Lino, P., Hinckelmann, M.-V., Perrier, A.L., Humbert, S., Saudou, F., 2021. Increasing brain palmitoylation rescues behavior and neuropathology in Huntington disease mice. Sci. Adv. 7, eabb0799.

Vitet, H., Brandt, V., Saudou, F., 2020. Traffic signaling: new functions of huntingtin and axonal transport in neurological disease. Curr Opin Neurobiol 63, 122–130.



From July 2022,
to infinity and beyond

20230609 frise News.png


Send us a message and we’ll get back to you shortly.

Thanks for submitting !

bottom of page